Write a Simple Image Classifier (Using package)
Created | |
---|---|
Tags | ML Coding |
Writing a simple image classifier using PyTorch during an interview demonstrates your understanding of deep learning concepts and your proficiency with PyTorch. Let's create a basic classifier that can categorize images from the CIFAR-10 dataset, which is a common benchmark in machine learning for image recognition. This dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class.
Here's a step-by-step guide to creating a simple image classifier using PyTorch:
Step 1: Import Necessary Libraries
First, you'll need to import PyTorch and other necessary libraries.
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
Step 2: Load and Normalize CIFAR-10 Data
Use the torchvision package to load the CIFAR-10 dataset and normalize it.
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
Step 3: Define a Convolutional Neural Network
Define a simple CNN architecture.
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
To calculate the spatial size of the feature map after applying a convolutional layer followed by max pooling, you need to consider the formula for calculating the output size of a convolutional layer and the pooling operation.
For the convolutional layer:
- Output height \( H_{out} \) and width \( W_{out} \) can be calculated using the formula:
where \( H
{in} \) and \( W_{in} \) are the input height and width, respectively, and padding is the amount of zero-padding added to the input.
For the max pooling layer:
- If
kernel_size
andstride
are the same, the output size is reduced by half.
Given that the input to the second convolutional layer (self.conv2
) has a spatial size of \( 7 \times 7 \) after the max pooling operation, we can infer the input size of the second convolutional layer and then calculate the spatial size of the feature map after applying self.conv2
.
Step 4: Define a Loss Function and Optimizer
Specify a loss function and an optimizer for training the network.
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
Step 5: Train the Network
Train the network on the training data.
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
Step 6: Test the Network on the Test Data
After training the network, test it on the test data to evaluate its performance.
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
This code provides a basic framework for an image classifier using PyTorch. During an interview, you can explain each step to demonstrate