Write Max Pooling from scratch
Created | |
---|---|
Tags | ML Coding |
https://betterdatascience.com/implement-pooling-from-scratch-in-python/
def get_pools(img: np.array, pool_size: int, stride: int) -> np.array:
# To store individual pools
pools = []
# Iterate over all row blocks (single block has `stride` rows)
for i in np.arange(img.shape[0], step=stride):
# Iterate over all column blocks (single block has `stride` columns)
for j in np.arange(img.shape[0], step=stride):
# Extract the current pool
mat = img[i:i+pool_size, j:j+pool_size]
# Make sure it's rectangular - has the shape identical to the pool size
if mat.shape == (pool_size, pool_size):
# Append to the list of pools
pools.append(mat)
# Return all pools as a Numpy array
return np.array(pools)
def max_pooling(pools: np.array) -> np.array:
# Total number of pools
num_pools = pools.shape[0]
# Shape of the matrix after pooling - Square root of the number of pools
tgt_shape = (int(np.sqrt(num_pools)), int(np.sqrt(num_pools)))
pooled = []
# Iterate over all pools
for pool in pools:
# Append the max value only
pooled.append(np.max(pool))
# Reshape to target shape
return np.array(pooled).reshape(tgt_shape)
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
def plot_image(img: np.array):
plt.figure(figsize=(6, 6))
plt.imshow(img, cmap='gray');
def plot_two_images(img1: np.array, img2: np.array):
_, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].imshow(img1, cmap='gray')
ax[1].imshow(img2, cmap='gray');
img = Image.open('data/train/cat/1.jpg')
img = ImageOps.grayscale(img)
img = img.resize(size=(224, 224))
plot_image(img=img)