Write Gradient Descent / Active Function from scratch
Created | |
---|---|
Tags | ML Coding |
# example of gradient descent for a one-dimensional function
from numpy import asarray
from numpy.random import rand
# objective function
def objective(x):
return x**2.0
# derivative of objective function
def derivative(x):
return x * 2.0
# gradient descent algorithm
def gradient_descent(objective, derivative, bounds, n_iter, step_size):
# generate an initial point
solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
# run the gradient descent
for i in range(n_iter):
# calculate gradient
gradient = derivative(solution)
# take a step
solution = solution - step_size * gradient
# evaluate candidate point
solution_eval = objective(solution)
# report progress
print('>%d f(%s) = %.5f' % (i, solution, solution_eval))
return [solution, solution_eval]
# define range for input
bounds = asarray([[-1.0, 1.0]])
# define the total iterations
n_iter = 30
# define the step size
step_size = 0.1
# perform the gradient descent search
best, score = gradient_descent(objective, derivative, bounds, n_iter, step_size)
print('Done!')
print('f(%s) = %f' % (best, score))
def activation_fn(self, x):
"""
A method of FFL which contains the operation and defination of given activation function.
"""
if self.activation == 'relu':
x[x < 0] = 0
return x
if self.activation == None or self.activation == "linear":
return x
if self.activation == 'tanh':
return np.tanh(x)
if self.activation == 'sigmoid':
return 1 / (1 + np.exp(-x))
if self.activation == "softmax":
x = x - np.max(x)
s = np.exp(x)
return s / np.sum(s)