import numpy as np
class LogisticRegression:
def __init__(self, learning_rate=0.01, num_iterations=10000):
self.learning_rate = learning_rate
self.num_iterations = num_iterations
self.weights = None
self.bias = None
def sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def fit(self, X, y):
m, n = X.shape
self.weights = np.zeros(n)
self.bias = 0
for iteration in range(self.num_iterations):
# Forward pass
z = np.dot(X, self.weights) + self.bias
predictions = self.sigmoid(z)
# Compute cost
cost = -(1 / m) * np.sum(y * np.log(predictions) + (1 - y) * np.log(1 - predictions))
# Backward pass
dz = predictions - y
dw = (1 / m) * np.dot(X.T, dz)
db = (1 / m) * np.sum(dz)
# Update parameters
self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db
# Print cost every 100 iterations
if iteration % 100 == 0:
print(f"Iteration {iteration}, Cost: {cost}")
def predict(self, X):
z = np.dot(X, self.weights) + self.bias
predictions = self.sigmoid(z)
return (predictions >= 0.5).astype(int)
# Example usage:
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# Generate synthetic data
np.random.seed(42)
X = np.random.randn(1000, 2)
y = (X[:, 0] + X[:, 1] > 0).astype(int)
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Instantiate the logistic regression model
model = LogisticRegression(learning_rate=0.01, num_iterations=100000)
# Train the model
model.fit(X_train, y_train)
# Make predictions on the test data
predictions = model.predict(X_test)
# Print the predictions
print("Predictions:", predictions)
# Calculate accuracy
accuracy = accuracy_score(y_test, predictions)
print("Accuracy:", accuracy)